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Problems of controlling parabolic systems under conditions of uncertainty are 
studied. Necessary and sufficient conditions are indicated for the solvability of 
the problems and methods for constructing the required controls are given. The 

paper is closely related to the researches in [l - 91. The main difference in 

the present paper, as also in [4 - 81, from the known researches on controlprob- 

lems for distributed-parameter systems (see [lo - 151, for instance) is that here 

the principle of feed-back control is discussed. 

1. Consider a system whose state at each instant t from a specified time interval 

It,, Sl is characterized by the scalar function y (t, .) = y (t, 2) defined in a domain 
Q of an n-dimensional Euclidean space Ii”. The system is subject to controh u1 and 
us and to uncontrolled disturbances u1 and r&. The system’s dynamics k described by 

the equatlon_.?nd collixtion of boundary conditions 

&.I (4 x)/at = Ay (t, 5) + b, (t, x)ul (t, 5) - (1.1) 

Cl (4 44 (t, 4 + f (4 4; 5 E Q, to < t < 6 

a?/ (t* I) 
‘l avA + ~a (x) Y (t, 5) = ba (5) ua (t) - (1.2) 

c2 (2gu.a (t); z E r, t, < t < 6 
Y (to, 4 = Yo (4.7 Lx= Q (1.3) 

Here r is the boundary of 52; d / dv, is the conormal derivative. At each instant t 
the controls are subject to the constraints u1 (t, .) E PI (t) and us (t) E P, (t), 
where P, (t) is some collection of functions defined on R with valuesin Rrj; p2 (t) c 

R’s; at each instant t we have the estimates v1 (t, -) E Q1 (t) clnd c2 (t) E Q2 (t) 
for the disturbances v, and us, where Q1 (t) is some collection of functions defined on 
51 with values in R”1; Qz (t) c Rml. 

The main purpose of the paper is to study the following problem towhich reduce many 
standard problems of the conflict control of system (1. l), (1.2). Under the specifiedcon- 

straints on the resources of control u1 and u2 and for known estimates on the intensities 
of disturbances u, and us we are required to find a method for forming the controls u1 
and ueon the feed-back principle (ul [t, Z] = u1 (t, Z, y It, -1) and up ItI = u2 (t, 
y It, -I)), which, for any admissible realizations of the disturbances, would guarantee 

that system (1.1) - (1.3) is led onto a specified state set in a specified period of time, 
and in such a way that specified phase constraints are satisfied during the control. 

Individual versions of the problem for system (1. l), (1.2) were studied in [5 - 73. Thus, 
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the case when the boundary condition (1.2) is a homogeneous Dirichlet condition (a1 == 
0, ba = 0 and cI = 0) and there are no phase constraints on the system’s states, in pac- 
titular, was considered (*) from the viewpoint of the theory of semigroups in [5]. A ver- 

sion of the problem was studied in [6] when only the boundary of domain 52 is subject 
to the controls and to the disturbances (b, = 0 and cl = O),where relation (1.2) once 
again is the Dirichlet boundary condition and we are dealing with the task of leading the 

system onto a specified set of states at a specified instant in the absence of phase con- 
straints. The effectiveness of the construction of the control procedure proposed in [5] 

was discussed in [7-J+ Below we consider the problem for system (1.1). (1.2) in a general 

formulation. 

2, Let us refine the statement of the problem, The symbol B (E,; Es) denotesthe 
Banach space B of functions on E, with values in E,; B (EJ = B (E,; B1); li*b 
is the norm in B. Measurability and integcability ace always understood in the Lebesgue 

measure sense and derivatives in the generalized sense (see [I.6 - 181, for example), We 
assume the satisfaction of the following conditions: fJ is a bounded domain with pco- 
perties (i),(2) and .R (see pp. 212 and 222 in [16]) ; A is a selfadjoint elliptic operator 
[16]; the functions aij and a ace measurable and bounded on Q, and d&j / dxk are 

bounded on Q; bl and q are measurable and bounded on Q = (t,, 6) x 52; f E 
L2 ((4; b,, C2? and IS, are measurable and bounded on r and 0,. 0, > 0 in I’ ; 
a2 > 0 .when o, = 0; y,, ET? L2 (52). Further, the sets 

p1 fG c A2 (a; fir*), ps t&f c Rrz, Q1 (t) c La (can; R”*), Q2 (t) c R”z, 

and in the appropriate spaces these sets ace convex, closed, measurable and equibounded 
with respect to t E [to, +I. All the quantities to be examined are real. 

I& si (.) Z= ui (t), t, < t < t, be a measurable function with values in Pi (t), 

i = 1, 2. According to the theorems on a measurable selection [19] sac11 functionsex- 

ist. Every pair u (.) = u (. ; t,, ts) = {ul (.), us (.)} of such functions is called a 

u-program. The rule u == u ( tl, ts, y) which associates some program U (* ; t,, tz) 

with each triple {&, ts, &J>, where t1 e it,,, @), ts E- (t,, 61 and Y e L” (St), (so 
that U (tl, ta, y) = u ( * ; t,, tz> f is called a strategy u. 

Let us introduce the concept of the motion of system (1. I), (l.2), corresponding to stra- 
tegy U. Let A be a finite partitioning of it,,, 61 by the points to = TO < Tl < . . . 
< z,(A) = 6, 6 (A) = maxi (‘E’~+~ - ‘I%). We form the sets 

CD = (q7 E H2*l (Q) 19, (6, X) = 0, 5 e Q; 

@$ (t, x) / avA + 0, (+$ (t, Z) = 0, Iz: e r, tE (to, 23)) 

Here HV (Q) is a Sobolev space consisting of all elements of L2 (Q) having first - 
and second-order generalized derivatives in IC and first-order in t. Every function 

y [. 1~ e C (It,, Sl; L2 (Cl)) satisfying the equality 

*) Similar questions were discussed also by: Osipov, Iu. S, , Differential games in dis- 
~buted-parameter systems. Abstracts Third All-Union Conf. on the Theory of Game% 
Odessa, 19’74. 
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far any cp E @ is called a motion y It] = y I& - y It; tot gQ, VIA, t, < 1; < 6 
of system (1. I), (1.2) from a position {to, y,), corresponding to strategy &T l Here 
F (9) = ~1 % 01 when o, # 0 and F (VP> = - crz-%p / c3vA when cr, = 0; on each 
interval I”E~, zi4r) 

(ItI lI*j, U2 I-1) z U (Zi, Zi+l* y i_Ci]) 

and L:, It] and u2 Itl, t, \( t G& 6 are some measurable realizations of the disturb- 
ances with values in Q1 (I) and Q2 (t) I respectively, The existence of motions can 

be verified, for example, by Gale&in’s method or by using the transposition method ES, 

IS] and relying on the theory of homogeneous boundary-value problems for equations of 
parabolic type [17]. 

The initial control problem can now be formulated as follows, Let M and N be cer- 
tain sets in the space [ to3 S] x L2 (22). 

Problem 2, 1, Construct a strategy U with the property: for any number E > 0 
a number 6 > 0 can be found such that the condition 

P((&t Y V,lA), :w = inf (I&-- 

where 
it.9 h,)GW 

4 1” + il Y f&/IA - h. ifwwY” < 8 {2* 2) 

Pi{4 Y Ma), NJ< e, 4I < K t, (2.3) 

is satisfied at the instant t, = t f& [ - ]A) far every motion g it)A ‘== g [i; tot go, t.f]A 

with 6 (A) < 6. 
\:‘e indicate ‘the conditions for the solvabifity of Problem 2.1 and a method for con- 

structing the strategy required, 

3 l Let (hf, Oj} be a solution in H’ (Q) of the spectral problem 

where Hrn (f2) is a Sobolev space of order m in domain Q (see [lo, 17, 181). Let 

{&j; j = 1,‘2, w . . ) be some set of numbers al satisfying the conditions: if or # 0, 
then ai I: 1, j = 1, 2,. . . ; if u, = 0 then 

(Such numbers atj exist since d#j f &A E L2 (r) under the assumptions made on the 
system’s parameters and on domain Q , according to the imbedding theorem (see [lS], 

Here <e, l >txca, is the symbol far the scalar product in L2 (a). When cl =#= 0 we 

have ~~Y~~ = IJ y JJL~oJ. Let K be some set in the position space [to, 6) X L2 (9). 
By the symbol,U’ we denote a strategy of the following form, Suppuse that some triple 
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{&, ts, 9) has been selec:ed. If K (tr) = @, then u” (tl, t* 8) is an arbitrary prog- 

ram u (+; tit 8s). If K (TV) # g, then U” (tr, t,, y) = (uIc (.), use (.)}. Herethe 
Uyc ( *), Y - 1, 2 are functions with the property: sequences {u,(~)}, Y L: 1, 2 and 
{zW> exist such that 

Here K (tl) is the section of fil by the plane t = tr; {u,}, Y = 1, 2 is the col- 
lection of all functions uu (t) measurable on It,, ts) t with values in P, (t), Theprog- 

ram @rc (*I, %” (-11 1 y a wa s exists under the condition hr (tr) # 0 . Strategy Ue 

is said to be extremal to set K. 

The rule which associates a certain pair u ( . ; t,, tZ) = (ul (~1, u, ( -) } of functions 
VI (t) and L$ (t) , measurable on the interval [tI, a) and having values in Qr (t) 

and 0s (t) , respectively, with every triple {t,, t,, y} is called a strategy V = V (tr, 

t,, y) {so that V (El, tz, y) = u (- ; tl, &)I. Let W (n/r, N) be the collection of all 
pairs (t*, y* } E [&,, S] x L2 (Q} with the property : for any strategy V and any 
numbers E > 0 and 6 > 0 there exists at leastone motion y [tl = y [GIA = y ft; 

t,, y,, VIA, t, \c t < 6 with S (A) < 6, for which the condition 

and 
p ( {&/r y [&]A ), M) < e 

P (f6 Y ItlA?.), W < 8, t* < t B ti, 

is satisfied at some instant t, = t (y [ - 1~) EZ it,, 61 ; (the motions $I it; t,, y,, 

VIA are defined by analogy with the motions y It; t,, y,, UJA: in the definition of 
the latter we need merely to replace the quantities U and vi [tl by thequantities t/ and 
ui it], where now Ui [tl are some measurable~nctio~withvalu~ in Pi (t), i = 1, 2). 

Theorem 3. 1. Let the sets M and N be closed in the metric 

II@, Y)lla =; 0” 4 ~~~~l~2~x” (3.11 

Problem 2.X is solvable if and only if 

(to, Yo) E w (M7 NI (3.2) 

Under condition (3.2) the strategy U’extremal to set J4.r (M, N) solves Problem 2.1. 
The necessity of condition (3.2) for the solvability of Problem 2.1 is obvious. The as- 



Position control in parabolic systems 191 

sertion that under condition (3.2) the strategy lJe extremal to set W solves problem 

2.1 can be verified in the following way. First of all we show (see the similar arguments 
in [l, 43) that for each motion y [ t]h = y [t; t,,, y,, U”la corresponding to a parti- 

tioning A with a sufficiently small diameter 6 (A), the point {t, y ItI*} remains in a 
small neighborhood of w, measured in metric (3. l), until the instant it hits a small 

neighborhood of set M, also measured in metric (3.1). Therefore, for a sufficiently small 

6 (A) each point {t, y itI&} necessarily rests, when t < 6 ,in the preassigned neigh- 
borhood of M before leaving the preassigned neighborhood of set N ; these neighborhoods 
are measured in metric (3.1). Taking into account that every bounded set in L*(B) is 
compact in metric (3.1) and that the set of motions y [ - ; t,,, y,, U’]a is compact in 

the space C (It,, 61; L* (a)) ; we also allow for the closedness of M and N in metric 

(3.1). Hence, relations (2.2) and (2.3) are satisfied for each motion y [ - ; t,, y,,, L;“la 
if only the diameter 6 (A) of partitioning A is fairly small. 

N o t e 3.1, Letusconsider the following evasion problem. Construct a strategy V with 
the property: numbers E > 0 and b > 0 exist such that for every motion 

Y It]* = Y [r; to, Y,* VI,, to 6 t < 6 

with 6 (A) < 6 , the condition that the instant ty = t (y [ *Ia) for which 

p ({t, y [t]& A’) < E, to d t G h 

p ((tv, Y ItvIa)9 M) B E 

does not exist, is satisfied. Let sets M and N be closed in metric (3.1). It can be veri- 
fied that the evasion problem has a solution if and only if the initial position {to, Yo} 

does not satisfy condition (3.2). The strategy V solving this problem also can be con- 

structed as a strategy extremal to some set in the space [to, 61 X La (Q). 

N o t e 3.2. Sets M and N are known to be closed in metric (3.1) if their projections 
onto space 17 (Q) are bounded weakly-closed sets in L” (a). 

4. Let us show a case when the set W (M, N) admits of an analytic description. 
We assume that N = L* (!A), set M lies wholly in the hyperplane t = 6: M = 

((6 Y)I~ = 6, Y E M (6)) , and its section M (19) is a convex bounded closed set 
in space L2 (n). We denote 

Go (t, 6) y = jjI Oj (a) e-‘j(‘-‘) (Oj, ~)L~(cI) (4.1) 

Cl (t, 6) f = i mj (-)ie-“j’e-T) (Oj, f)~yn,dt 
j=l 1 

G1, (t, 4) u, = G1 (t, 6) &I, G,, (h *) ~1 = GI (4 +) CIUI 

G2, (t, 6) ILL = $ Oj (. ) i (F (Oj)y b2h@+(*-‘) ua (t) dr 
j-l t 

G,, (t, 6) ~2 = jjI Oj (* ) j (F (Oj)T c~)L~(r)e-hi’8-~‘~~(t) dr 
t 
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cp (6 Y, 6, h) = PM 0, 6, h) + pm (t, 6, h) - 
plu (t, 6, h) - pzu (t, 6, h) + piu (h) - 

(12, Gi(t, 6) f>~vy- (h, G,(t, 6) Y)L~I) 

C on d it i on 4.1. If the ~equa~~ y (t, ,r~, S) > 0 is satisfied for certain t E 
[to, 9) and 3 e La (a) , the upper bound in (4.1) is reached on a single element. 

Condition 4.1 is an anabg of the regularity condition [l] (see also [8]). The follow- 
ing theorem holds: 

The ore m 4.1. Let Condition 4.1 be satisfied. The element {t, r~) E W (M, 

L2 (Q)) if and only if y (t, y, 6) < 0. 
The proof of Theorem 4. 1 follows the plan of the proof of the similar statement in [S]. 

N ote 4. l, Condition 4.1 is satisfied knowingly if for each t E [to, 6) the func- 
tional 

X (& 6, h) = PlV ($3 6, h) + P2v (6 6, N - PlU (4 6, h) - Pzu ($9 

6, h) + piu (h) 

is concave in h. In its own turn, the concavity of X. (t, 6, h) for any t holds if, for 
example, the following uniformity condition is satisfied: concave sets fii (t) C A2 (Q), 

i = 1, 2, exist for each t E It,, S) ,such that for almost all t E It,, fi) 

Gi, (tl 6) Pi (f) = Giv (t, ~)QI (t) 
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