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Problems of controlling parabolic systems under conditions of uncertainty are
studied, Necessary and sufficient conditions are indicated for the solvability of
the problems and methods for constructing the required controls are given, The
paper is closely related to the researches in [1— 9], The main difference in
the present paper, as also in (4 — 8], from the known researches on control prob-
lems for distributed-parameter systems (see [10 — 15], for instance) is that here
the principle of feed-back control is discussed,

1, Consider a system whose state at each instant ¢ from a specified time interval
[t,, ©] is characterized by the scalar function y (¢, )=y (¢, ) definedin a domain
Q of an n-dimensional Euclidean space I&". The system is subject to controls u, and
u, and to uncontrolled disturbances v; and v,. The system's dynamics is described by
the equation.2nd collection of boundary conditions

ay (t, z)/ot = Ay (t, z) + by (¢, 2)u, (¢, ) — (L 1)
51 (tv x)vl (ts I) +f(t’ .’13), EASS Q, to <t < 0
o a;git‘; ) 4+ 03 (x) y (¢, 7) = by () ug (t) — (1.2

@y ();zeET, t,<<t<Y

y(ty, ) = Yo (2), =& Q (1.3)
n
i) oy
Ay =3 (00 37 o @)y

Here I' is the boundary of §2; 0/ dv, is the conormal derivative. At each instant ¢
the controls are subject to the constraints u, (¢, -) & P, () and u, (t) € P, (t),
where P, (t) is some collection of functions defined on Q with valuesin R P, (t)
R'™; at each instant ¢ we have the estimates v, (£, +) € @ (2) and v, (2) € Q, (1)
for the Jisturbances v, and v,,where @Q; (£) is some collection of functions defined on
Q with values in R™; Q, (t) C R™.

The main purpose of the paper is to study the following problem towhich reduce many
standard problems of the conflict control of system (1. 1), (1. 2). Under the specified con-
straints on the resources of control y,; and u;and for known estimates on the intensities
of disturbances v, and v, we are required to find a method for forming the controls u,
and u,on the feed-back principle (u, [¢, z) = u, (¢, z, y [¢, -1) and u, [t] = u, (¢,
y l¢, -1)), which, for any admissible realizations of the disturbances, would guarantee
that system (1, 1) — (1, 3) is led onto a specified state set in a specified period of time,
and in such a way that specified phase constraints are satisfied during the control,

Individual versions of the problem for system (1, 1), (1. 2) were studied in [5 — 7]. Thus,
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the case when the boundary condition (1. 2) is a homogeneous Dirichlet condition (o ==
0, by == 0 and ¢, == 0) and there are no phase constraints on the system's states, in par-
ticular, was considered (*) from the viewpoint of the theory of semigroups in [5]. A ver-
sion of the problem was studied in [6] when only the boundary of domain Q is subject
to the controls and to the disturbances (b; = 0 and ¢; = 0) where relation (1.2) once
again is the Dirichlet boundary condition and we are dealing with the task of leading the
system onto a specified set of states at a specified instant in the absence of phase con-
straints, The effectiveness of the construction of the control procedare proposed in [5]
was discussed in [7], Below we consider the problem for system (1, 1), (1, 2) in a general
formulation,

2, Let us refine the statement of the problem, The symbol B (E;; E,) denotesthe
Banach space B of functions on F, with values in E,; B (E;) = B (Ey; RY); |-le
is the norm in B. Measurability and integrability are always understood in the Lebesgue
measure sense and derivatives in the generalized sense (see [16 — 18], for example), We
assume the satisfaction of the following conditions: {2 is a bounded domain with pro~
perties (1),(2) and R (see pp. 212 and 222 in [16]); A is a selfadjoint elliptic operator
[16]; the functions a@;; and @ are measurable and bounded on Q,and da;; / Oy are
bounded on Q; by and ¢, are measurable and bounded on @ = (fy, 9) X Q; f&

L2 (Q); by, €5y and Oy are measurable and bounded on I' and 0;-0, >0 in T';
o, > 0 -when o, = 0; yo & L% (Q). Further, the sets

Py () C L2 (@ R™), Py (8) CC R™ Qy (8) T L*(Q; R™), Q. (t) C R™,

and in the appropriate spaces these sets are convex, closed, measurable and equibounded
with respect to t € [#o, B]. All the quantities to be examined are real.

Let u; (-) = u; (t), £, << ¢ < i, be a measurable function with values in P; (¢),
i = 1, 2. According to the theorems on a measurable selection [19] such functionsex~
ist. Every pair u (-) = wu (+; t;, t) = {uy (+), ug (+)} of such functions is called a
u~program, The rule U == U (¢, t,, y) which associates some program u (-; t1, ta)
with each triple {t;, s, ¥}, where t; € [t,, 9), &, & (t,, 9] and ¥ & L* (Q), (so
that U (&, ty, ¥) = 8 (+; t1, &y) ) is called a strategy U.

Let us introduce the concept of the motion of system (1. 1), (1. 2), corresponding to stra-
tegy U. Let A be a finite partitioning of {¢,, 9] by the points fp = To << 7T, <T. ..
< Tpyay = 9, 8 (A) = max; (1,4, — Ti). We form the sets

O ={eE " (Q)lp(®, 2) =0,z Q;
009 (t, 2) / Ova + 0, (D)9 (8, 2) =0, z E T, t E (8, B}

Here H®! (Q) is a Sobolev space consisting of all elements of L*? (@) having first~
and second-order generalized derivatives in z and first-order in ¢ Every function
y[-1a € C (L, 01; L? (RQ)) satisfying the equality

Sﬂw%}’i—m)dxdt:&(i—%bxu;{t]— (2.1
Q

*) similar questions were discussed also by: Osipov,Iu.S,, Differential games in dis-
tributed~parameter systems, Abstracts Third All-Union Conf. on the Theory of Games,
Odessa, 1974,
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ey () @dxdt -+ yo (to, 7) der +
Q

\ §Baia 111 — ea 121) F () T a
r

ot P

for any ¢ & @ is called a motion y [¢] = y [tla = y £ &, yo, Ula, 2, <t B
of system (1, 1), (1. 2) from a position {t,, y, }, corresponding to strategy I . Here
F{g) =@/ 0y when 0,0 and ¥ (¢) = — 0, 'd¢ / dv4 when g, = 0; on each

int 1 iv Yi 4
interval [t;, T +1) {u1 [.j, Uy [.]} = [J (T, Tisg Y [Ti})

and v, [¢] and v, [t], ¢, < t < O are some measurable realizations of the disturb-
ances with values in @y () and Q. () ,respectively, The existence of motions can
be verified, for example, by Galerkin's method or by using the transposition method {9,
18] and relying on the theory of homogeneous boundary-value problems for equations of
parabolic type [17],

The initial control problem can now be formulated as follows, Let M and N be cer-
tain sets in the space [#;, ] X L* (Q).

Problem 2,1, Construct a strategy U with the property: for any number € > 0
a number § >> O can be found such that the condition

Pty yltlah M) = int (1= [+ ]y Lt —

where v

hlua)*<<e (2,9

p({t, yltha), M) <e, H <t Yy (2.3
is satisfied at the instant £, = ¢ (y [-]4) for every motion y [¢]a y 1t ty, yo, Ula
with § (A) < §.

We indicate the conditions for the solvability of Problem 2.1 and a method for con-
structing the strategy required,

3, Let {A;, ©;} be asolution in H* (Q) of the spectral problem

0
Ao = — Ao, 1=, 010 + Gaolp =0

where H™ (£2) is a Sobolev space of order m in domain Q (see [10, 17, 18]). Let
{a;; j = 1,'2,.. .} be some set of numbers a; satisfying the conditions: if &, 5 0,
then q; == 1, j =1, 2,...; if 0 = 0 then

e ©
0 <Ta; <1, Zai2<°°» 2%’ Hjm ﬁ < o0
i=t j=1 V4l
(Such numbers o exist since da; / dv4 & L* (T') under the assumptions made on the
system's parameters and on domain Q, according to the imbedding theorem (see [16],
for example)),
For y € L% (Q) we denote

1,
19l = (Z a® <y, mi)L‘(m)
Here <+, -Drxaqy is the symbol for the scalar product in L? (Q). When 0; 5= 0 we

have ﬂy = ||y L:@)- Let K be some set in the position space [t,, @) X L? (Q).
By the symbol;U‘ we denote a strategy of the following form. Suppose that some triple
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{t1, 3, ¥} has been selected, If K (&) = (7, then U°® (4, ts y) is an arbitrary prog-
ram u (+; &y, &), If K (&) # (), then U® (4, ty, y) = {w® (+), us® (+)}. Herethe
w* (+), v=1, 2 are functions with the property; sequences {u,©}, v =1, 2 and
{z(} exist such that

lim y — 28 . = inf |y — k|«
k—»roo hezK(t)

e K (8), k=1, 2.

{uff")} — u§ weakly in L2 ([¢,, t,); R™)
(k (k

{uy >’ ll (Z ) — y)>L*([h, t2); LS RTy) —

n{aa}x s b (# = YD1, 0y, L@ BT
51

(k) ¢y - (k)
ey L& = YD fapay, by By = max v La (B = YD Lapry, 1 BT
- I QT TR
L) = 2 a2 <y, o e T o, (¢, 2)
i=1

1:(y) = 21 a2 <y, ;> raay eI Cby, F(0)d1am)
ge=

Here K (t;) is the section of K by the plane ¢t = t,; {u,}, v = 1, 2 is the col-
lection of all functions w, () measurable on [¢,, ¢,) , with values in P, (f). The prog-
ram {u,° (+), u,® ()} always exists under the condition K () 5= (¢f . Strategy Ue®
is said to be extremal to set K.

The rule which associates a certain pair v (-3 &, &) = {vy (+), Vg (+)} of functions
Uy () and v, (¢) , measurable on the interval {t;, t,) and having values in @ (%)
and O, () ,respectively, with every triple {Z;, ,, y} is called a strategy V = V (¢,,
fy, Y) (so that ¥ (¢, &y, y) = v (- 1, 13)). Let W (M, N) be the collection of all
pairs {ty, Yu} € [y, 8] X L?(Q) with the property: for any strategy V and any
numbers ¢ > 0 and 8 >> O there exists at leastone motion y [#] = y [tla = y [
e Yser Vias tx <8 <C O with 8 (A)<C6, for which the condition

p ({ty, yt,Ja}, M)y <e

o({t, y lta}, V) e, £, <<y,
is satisfied at some instant ¢, == ¢ (y [-1a) & [t,, 9] ; (the motions ¥ [t tyey Vg
V1a are defined by analogy with the motions y l#; £, ¥4 Ula® in the definition of
the latter we need merely to replace the quantities U and v; [¢] by the quantities ¥ and
u; Ltl, where now u; [t} are some measurable functions with values in P; (8), i = 1, 2).
Theorem 3, 1. Let che sets M and N be closed in the metric

and

e, ylle = (& + lpla®™ (3.1
Problem 2.1 is solvable if and only if
{to, yo} € W (M, N) (3.2

Undei condition (3. 2) the strategy U°®extremal to set W (M, N) solves Problem 2.1,
The necessity of condition (3, 2) for the solvability of Problem 2, 1 is obvious, The as-
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sertion that under condition (3, 2) the strategy IJ® extremal to set W solves problem
2.1 can be verified in the following way. First of all we show (see the similar arguments
in [1, 4]) that for each motion y [t]a = y [¢; ¢y, Yo, Ula corresponding to a parti-
tioning A with a sufficiently small diameter 8 (A), the point {¢, ¥ [¢]s} remains ina
small neighborhood of W, measured in metric (3, 1), until the instant it hits a small
neighborhood of set M, also measured in metric (3. 1), Therefore, for asufficiently small
8 (A) each point {¢, y [t]y} necessarily rests, when ¢ < ¥ , in the preassigned neigh-
borhood of M before leaving the preassigned neighborhood of set N ; these neighborhoods
are measured in metric (3. 1), Taking into account that every bounded set in L% Q) is
compact in metric (3.1) and that the set of motions y [ ¢, yo, U°la is compactin
the space C (lt,, 8]; L? (Q)) ; we also allow for the closedness of M and NV in metric
(3. 1). Hence, relations (2. 2) and (2, 3) are satisfied for each motion y [-; to, Yoo U¢la
if only the diameter § (A) of partitioning A is fairly small.

Note 3. 1. Letusconsider the following evasiaon problem, Construct a strategy Vv with
the property: numbers € > 0 and & > ¢ exist such that for every motion

yltla =yt to, wor Vi toSt<®
with 8 (A) {8 ,the condition that the instant ¢, = ¢ (y [-],) for which

ot yltla) N) <8 SIS Yy

p ({tyv y [tu]A}, M)yse

does not exist, is satisfied, Let sets M and N be closed in metric (8. 1), It can be veri-
fied that the evasion problem has a solution if and only if the initial position {t5, ¥o}
does not satisfy condition (3. 2), The strategy V solving this problem also can be con-~
structed as a strategy extremal to some set in the space [to, €] X L% (Q).

Note 3,2, Sets M and N are known to be closed in metric (3. 1) if their projections
onto space 12 (Q) are bounded weakly-closed sets in L? (Q).

4. Letusshow a case when the set W (M, ) admits of an analytic description,
We assume that N = L? (Q), set M lies wholly in the hyperplane ¢ = §: M —
{{t, y}It = O, y= M (9)} ,and its section M (9) is a convex bounded closed set
in space L% (). We denote

o

Go(t, B)y = ,2' 03 (+) e oy, i (4.1
=1
00 8

Gy (t,9)f = E o; (-)Se')"'w—‘) {wj, [YLya) dv
=1 t

Glu (t, ‘l‘}) Uy = G1 (t, 0) blul, Gw (t, '&) V), = G1 (t, ‘0) [SU2Y

o 8
Gan (b ) = 3 0 () | <F (@), badrame ™ ug (1) de
t

i=1

CF (05), €2 Lr(r‘)e'kj(e-')vg (v)dt

[\L

Ga (t’ ﬁ)v2 = wi(’)

~—y

i

vyt y, )= sup @y, Ah)
MhlLsQ)=1

1
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(P(t, Y, '&7 h) - plv(t! '&’ h) JF' 9211 (t: 13‘? }1’) b
plu (t7 ﬁa h) - qu (ty 0‘1 h’) + Pnm (h) -
<hv Gi (t’ ﬁ) f>L’(ﬂ) h <hm GO (t1 ﬁ) y>L2(ﬂ)

uoiv (tv ﬁ‘v h’) = max <h9 Giv (tv ﬁ) vi>L’(ﬂ)
“’i}
P (t, O, b} = I(na}x Chy G (8, B) UidLxn)
pum (h) = min <k, ¢dra)
q=M(8)

Condition 4.1, If the inequality 7 (¢, y, #) > O is satisfied for certain ¢ &=
[ty, 0) and y & L? (Q) , the upper bound in (4, 1) is reached on a single element,

Condition 4, 1 is an analog of the regularity condition {1] (see also [8]). The follow=
ing theorem holds:

Theorem 4,1, Let Condition 4, 1 be satisfied. The element {t, y} &= W (M,
L? (Q)) if and only if y (¢, y, 9) << 0.

The proof of Theorem 4, 1 follows the plan of the proof of the similar statement in 8],

Note 4,1, Condition 4, 1 is satisfied knowingly if for each t & (t,, ©) the func-

tional x (£ O, h) = pyp (£, B, k) + poy (&, B, k) — pau (& B, k) — pau (8,
¢, k) + pum (B)

is concave in A. In its own turn, the concavity of ¥ (¢, ®, &) for any ¢ holds if, for
example, the following uniformity condition is satisfied: concave sets R; (f) C L? (Q),
i = 1, 2, exist for each t &[4, §) ,such that for almost all ¢ & [z, 9)

Giu (8, ) Py (8) = Gy (8, B)Q; (1) + R (1), i=1,2
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